If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2+24x-10=0
a = 36; b = 24; c = -10;
Δ = b2-4ac
Δ = 242-4·36·(-10)
Δ = 2016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2016}=\sqrt{144*14}=\sqrt{144}*\sqrt{14}=12\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-12\sqrt{14}}{2*36}=\frac{-24-12\sqrt{14}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+12\sqrt{14}}{2*36}=\frac{-24+12\sqrt{14}}{72} $
| -12(3+b)=36 | | 4(4x+5)=18x+14 | | 4x+2=-3x+23 | | 3(y+8)=(2y-6 | | 7x+3(4x-8)=10 | | (2w-5)(w)=85.9 | | 7a–8=4a+4 | | x+6/8=2/8 | | 12+(8x-2)=10x | | 3/8(24/3x-16)-6=1/5(15x+25) | | -1(1-4r)-2(8r+1)=57 | | (1/4)x-4=3/2x=3/4x | | 3/8(24/3x-16)-6=1/5(15x+15) | | -6n+23+2n=15 | | -2(x-1/7)=-3 | | -4y+8=2-3y | | s^2+5s=1 | | 82x=360 | | 4r+6=16r+10 | | 7x+3(4x-8)=108 | | 5(3x+3)=105 | | -4x=|x-3| | | 10(3-7u)+65u+5u=6 | | 78=21^x | | 263=186-w | | g÷-4-5=3 | | 9a–2=8a+3 | | 3(2x-4)=19 | | (x-7)/5=2 | | 8(v-10)=-80+8v | | 10=5x+4(x-2) | | 1.3(3)p=7.9 |